Skip to main content

Advertisement

Log in

Phase and microstructure pattern selection of Zn-rich Zn–Cu peritectic alloys during laser surface remelting

  • Metals & corrosion
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Peritectic solidification has attracted increasing attention as a lot of important binary alloys, such as Fe–Ni, Zn–Cu, Fe–C and Ti–Al, exhibit peritectic reaction during solidification. In order to investigate the solidification behavior of Zn-rich Zn–Cu peritectic alloy containing nominally up to 7.8 wt.% Cu, a series of laser surface remelting experiments were performed. With the increase in growth velocity, Zn–Cu alloys with Cu content below 3.0wt.% showed an evolutional sequence from low-velocity η planar interface → lamellar structures → η shallow cells and finally to high-velocity η planar interface. The Zn-4.0 wt.%Cu alloy showed a similar transitional sequence except that irregular η cells appeared when low-velocity planar interface became unstable. In contrast, ε cell/dendrite was the typical microstructure of the Zn-7.8 wt.% Cu alloy within the whole scanning velocity range. Based on the maximum interface temperature criterion, a eutectic growth model under rapid solidification conditions (TMK model) and a self-consistent numerical model for the cellular and dendrite growth were applied to establish a phase and microstructure pattern selection map, which drew a clear whole picture of the relationship between phase/microstructure and solidification conditions of this series of alloys. Regarding the microstructure feature, our investigation revealed the range of the solidification velocity and chemical composition of lamellar structures as dominant microstructure and their lamellar spacing displayed a considerable range of the average value as a function of growth velocity. The relationship between the lamellar spacing and the growth velocity was further analyzed by using the TMK eutectic model, and the results showed the same overall trend as the experimental results.

Graphical abstract

A phase and microstructure pattern selection map of Zn-rich Zn–Cu peritectic alloys. Regression analysis of the average spacing of lamellar structures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13
Figure 14
Figure 15
Figure 16
Figure 17

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Boettinger WJ (1974) The structure of directionally solidified two-phase Sn-Cd peritectic alloys. Metall Mater Trans B 5:2023–2031. https://doi.org/10.1007/BF02644495

    Article  CAS  Google Scholar 

  2. Wang L, Shen J, Wang L, Du YJ, Fu HZ (2014) Formation mechanism of banded structure during directional solidification of Sn–Cd peritectic alloy under convection condition. Appl Phys A 114:769–776. https://doi.org/10.1007/s00339-014-8250-5

    Article  CAS  Google Scholar 

  3. Shin JH, Lee J (2020) Modified microstructure selection map and growth conditions of the band structure in directionally solidified hypo-peritectic alloys. Met Mater Int. https://doi.org/10.1007/s12540-020-00636-6

    Article  Google Scholar 

  4. Busse P, Meissen F (1997) Coupled growth of the properitectic α- and the peritectic γ-phases in binary titanium aluminides. Scripta Mater 36:653–658. https://doi.org/10.1016/S1359-6462(96)00438-1

    Article  CAS  Google Scholar 

  5. Xu W, Ma D, Feng YP, Li Y (2001) Observation of lamellar structure in a Zn-rich Zn-6.3at.% Ag hyper-peritectic alloy processed by rapid solidification. Scr Mater 44:631–636. https://doi.org/10.1016/S1359-6462(00)00604-7

    Article  CAS  Google Scholar 

  6. Lo TS, Dobler S, Plapp M, Karmar A, Kurz W (2003) Two-phase microstructure selection in peritectic solidification: from island banding to coupled growth. Acta Mater 51:599–611. https://doi.org/10.1016/S1359-6454(02)00440-8

    Article  CAS  Google Scholar 

  7. Thoma DJ, Perepezko JH (1992) An experimental evaluation of the phase relationships and solubilities in the NbCr system. Mater Sci Eng, A 156:97–108. https://doi.org/10.1016/0921-5093(92)90420-6

    Article  Google Scholar 

  8. Löser W, Volkmann T, Herlach DM (1994) Nucleation and metastable phase formation in undercooled FeCrNi melts. Mater Sci Eng A 178:163–166. https://doi.org/10.1016/0921-5093(94)90536-3

    Article  Google Scholar 

  9. Gao J, Volkmann T, Herlach DM (2002) Undercooling-dependent solidification behavior of levitated Nd14Fe79B7 alloy droplets. Acta Mater 50:3003–3012. https://doi.org/10.1016/S1359-6454(02)00128-3

    Article  CAS  Google Scholar 

  10. Lü P, Wang HP (2016) Direct formation of peritectic phase but no primary phase appearance within Ni83.25Zr16.75 peritectic alloy during free fall. Sci Rep. https://doi.org/10.1038/srep22641

    Article  Google Scholar 

  11. Chalmers C (1959) Physical metallurgy. Wiley, New York

    Google Scholar 

  12. Luo L, Su Y, Guo J, Li XZ, Fu HZ (2007) A simple model for lamellar peritectic coupled growth with peritectic reaction. Sci China Ser G 50:442–450. https://doi.org/10.1007/s11433-007-0042-x

    Article  CAS  Google Scholar 

  13. Lee JH, Verhoeven JD (1994) Peritectic formation in the Ni-Al system. J Cryst Growth 144:353–366. https://doi.org/10.1016/0022-0248(94)90477-4

    Article  CAS  Google Scholar 

  14. Vandyoussefi M, Kerr HW, Kurz W (2000) Two-phase growth in peritectic Fe–Ni alloys. Acta Mater 48:2297–2306. https://doi.org/10.1016/S1359-6454(00)00034-3

    Article  CAS  Google Scholar 

  15. Hohler F, Germond L, Wagnière JD, Rappaz M (2009) Peritectic solidification of Cu–Sn alloys: microstructural competition at low speed. Acta Mater 57:56–58

    Article  Google Scholar 

  16. Ma D, Li Y, Ng SC, Jones H (2000) Unidirectional solidification of Zn-rich Zn–Cu peritectic alloys—I. Microstruct Sel Acta Mater 48:419–431. https://doi.org/10.1016/S1359-6454(99)00365-1

    Article  CAS  Google Scholar 

  17. Xu W, Feng YP, Li Y, Zhang GD, Li ZY (2002) Rapid solidification behavior of Zn-rich Zn–Ag peritectic alloys. Acta Mater 50:183–193. https://doi.org/10.1016/S1359-6454(01)00321-4

    Article  CAS  Google Scholar 

  18. Perepezko JH, Boettinger WJ (1983) Use of metastable phase diagrams in rapid solidification. In: Bennett LH, Massalski TB, Giessen BC (eds) Alloy Phase Diagrams. Mat Res Soc Symp Proc 19. Elsevier North Holland, New York

  19. Liu YC, Yang GC, Zhou YH (2002) High-velocity banding structure in the laser-resolidified hypoperitectic Ti47Al53 alloy. J Cryst Growth 240:603–610. https://doi.org/10.1016/S0022-0248(02)01069-2

    Article  CAS  Google Scholar 

  20. Su YP, Wang M, Lin X, Huang WD (2004) Researches on lamellar structures in the unidirectional solidified Zn–2 wt.% Cu peritectic alloy. Mater Lett 58:2670–2674. https://doi.org/10.1016/j.matlet.2004.04.006

    Article  CAS  Google Scholar 

  21. Su YP, Lin X, Wang M, Xue L, Huang WD (2004) Lamellar structures in laser surface remelted Zn–Cu peritectic alloy under ultra-high temperature gradient. Scripta Mater 51:397–403. https://doi.org/10.1016/j.scriptamat.2004.05.011

    Article  CAS  Google Scholar 

  22. Mullins WW, Sekerka RF (1963) Morphological stability of a particle growing by diffusion or heat flow. J Appl Phys 34:323–329. https://doi.org/10.1063/1.1702607

    Article  CAS  Google Scholar 

  23. Mullins WW, Sekerka RF (1964) The stability of a planar interface during solidification of a dilute binary alloy. J Appl Phys 35:444–451. https://doi.org/10.1063/1.1713333

    Article  Google Scholar 

  24. Trivedi R, Kurz W (1986) Morphological stability of a planar interface under rapid solidification conditions. Acta Metall 34:1663–1670. https://doi.org/10.1016/0001-6160(86)90112-4

    Article  CAS  Google Scholar 

  25. Wollkind DJ, Segel LA (1970) A nonlinear stability analysis of the freezing of a dilute binary alloy. PHILOS T R SOC B 268:351–380. https://doi.org/10.1098/rsta.1970.0078

    Article  CAS  Google Scholar 

  26. Langer JS, Turski LA (1977) Studies in the theory of interfacial stability-I. Stationary symmetric model. Acta Metall 24:1113–1119. https://doi.org/10.1016/0001-6160(77)90199-7

    Article  Google Scholar 

  27. Langer JS (1977) Studies in the theory of interfacial stability-II. Moving symmetric model. Acta Metall 25:1121–1137. https://doi.org/10.1016/0001-6160(77)90200-0

    Article  Google Scholar 

  28. Ungar LH, Brow RA (1984) Cellular interface morphologies in directional solidification. The one-sided model. Phys Rev B 29:1367–1380. https://doi.org/10.1103/PhysRevB.29.1367

    Article  CAS  Google Scholar 

  29. Schlitz LZ, Garimella SV (1994) Nonlinear interface stability analysis of alloy solidification including effects of surface energy. J Appl Phys 76:4863–4871. https://doi.org/10.1063/1.357260

    Article  CAS  Google Scholar 

  30. Boettinger WJ, Shechtman D, Schaefer RJ (1984) The effect of rapid solidification velocity on the microstructure of Ag-Cu Alloys. Metall Trans A 15:55–66. https://doi.org/10.1007/BF02644387

    Article  Google Scholar 

  31. Kurz W, Giovanola B, Trivedi R (1986) Theory of microstructural development during rapid solidification. Acta Metall 34:823–830. https://doi.org/10.1016/0001-6160(86)90056-8

    Article  CAS  Google Scholar 

  32. Jones H (1991) Modelling of growth and microstructure selection in rapid solidification: a progress report. Mater Sci Eng A 133:33–39. https://doi.org/10.1016/0921-5093(91)90009-C

    Article  Google Scholar 

  33. Bathula V, Liu C, Zweiacker K, McKeown J, Wiezorek JMK (2020) Interface velocity dependent solute trapping and phase selection during rapid solidification of laser melted hypo-eutectic Al-11at.%Cu alloy. Acta Mater 195:341–357. https://doi.org/10.1016/j.actamat.2020.04.006

    Article  CAS  Google Scholar 

  34. Shuai CJ, He CX, Qian GW, Min AJ, Deng YW, YangWJ ZXF (2021) Mechanically driving supersaturated Fe–Mg solid solution for bone implant: preparation, solubility and degradation. Compos B Eng 207:108564. https://doi.org/10.1016/j.compositesb.2020.108564

    Article  CAS  Google Scholar 

  35. Shuai CJ, Dong Z, He CX, YangWJ PSP, Yang YW, Qi FW (2020) A peritectic phase refines the microstructure and enhances Zn implants. J Mater Res 9:2623–2634. https://doi.org/10.1016/j.jmrt.2020.04.037

    Article  CAS  Google Scholar 

  36. Yang S, Huang WD, Liu WJ, Su YP, Zhou YH (2002) Research on laser rapid directional solidification with ultra-high temperature gradient. Chin J Lasers 29A:475–479. https://doi.org/10.7666/d.Y360579

    Article  Google Scholar 

  37. Zimmermann M, Carrard M, Kurz W (1989) Rapid solidification of Al-Cu eutectic alloy by laser remelting. Acta Metall 37:3305–3313. https://doi.org/10.1016/0001-6160(89)90203-4

    Article  CAS  Google Scholar 

  38. Liu ZX, Huang WD, Yang S (2002) Numerical simulation of laser surface re-melting and its use in laser directional solidification. Chin J Nonferrous Met 12:458–463. https://doi.org/10.3321/j.issn:1004-0609.2002.03.011

    Article  CAS  Google Scholar 

  39. Bertelli F, Meza ES, Goulart PR, Cheung N, Riva R, Garcia A (2011) Laser remelting of Al–1.5 wt%Fe alloy surfaces: numerical and experimental analyses. Opt Lasers Eng 49:490–497. https://doi.org/10.1016/j.optlaseng.2011.01.007

    Article  Google Scholar 

  40. Trivedi R, Magnin P, Kurz W (1987) Theory of eutectic growth under rapid solidification conditions. Acta Metall 35:971–980. https://doi.org/10.1016/0001-6160(87)90176-3

    Article  CAS  Google Scholar 

  41. Lin X, Li YM, Liu ZX, Li T, Huang WD (2001) Self-consistent modeling of morphology evolution during unidirectional solidification. Sci Techn Adv Mater 2:293–296. https://doi.org/10.1016/S1468-6996(01)00056-0

    Article  CAS  Google Scholar 

  42. Lin X, Huang WD, Wang M, Li YM, Li T, Su YP, Shen SJ (2002) Morphological evolution model for unidirectional solidification of multicomponent alloys. Sci China Ser E-Technol Sci 45:146–151. https://doi.org/10.1360/02ye9018

    Article  CAS  Google Scholar 

  43. Pan QY, Huang WD, Lin X, Zhou YH (1997) Primary spacing selection of CuMn alloy under laser rapid solidification condition. J Cryst Growth 181:109–116. https://doi.org/10.1016/S0022-0248(97)00273-X

    Article  CAS  Google Scholar 

  44. Tiller WA, Rutter JW (1956) The effect of growth conditions upon the solidification of a binary allow. Can J Phys 34:96–121

    Article  Google Scholar 

  45. Morris LR, Winegard WC (1969) The development of cells during the solidification of a dilute Pb-Sb alloy. J Cryst Growth 5:361–375. https://doi.org/10.1016/0022-0248(69)90038-4

    Article  CAS  Google Scholar 

  46. Thi NH, Billia B, Capella L (1990) Cellular arrays during upward solidification of Pb-30 wt% T1 alloys. J Phys 51:625–637. https://doi.org/10.1051/JPHYS:01990005107062500

    Article  Google Scholar 

  47. Sato T, Ito K, Ohiro G (1980) Interfacial stability of planar solid-liquid interface during unidirectional solidification of Al-Zn alloy. Metall Trans JIM 21:441–448

    Article  CAS  Google Scholar 

  48. Kubin LP, Estrin Y (1985) The portevin-Le Chatelier effect in deformation with constant stress rate. Acta Metall 33:397–407. https://doi.org/10.1016/0001-6160(85)90082-3

    Article  Google Scholar 

  49. Trivedi R, Kurz W (1994) Dendritic growth. Int Mater Rev 39:49–74. https://doi.org/10.1179/imr.1994.39.2.49

    Article  CAS  Google Scholar 

  50. Aziz MJ, Boettinger WJ (1994) On the transition from short-range diffusion-limited to collision-limited growth in alloy solidification. Acta Metall Mater 42:527–537. https://doi.org/10.1016/0956-7151(94)90507-X

    Article  CAS  Google Scholar 

  51. Hunt JD, Lu SZ (1996) Numerical modeling of cellular/dendritic array growth: spacing and structure predictions. Metall Mater Trans A 27:611–623. https://doi.org/10.1007/BF02648950

    Article  Google Scholar 

  52. Massalski TB (1990) Binary Alloy Phase Diagrams. ASM International, Materials Park

  53. Liu HY, Jones H (1992) Solidification microstructure selection and characteristics in the zinc-based Zn. Acta Metall 40:229–239. https://doi.org/10.1016/0956-7151(92)90298-S

    Article  CAS  Google Scholar 

  54. Cahn RW, Haasen P (1996) Physical metallurgy, 4th edn. North-Holland, Amsterdam

    Google Scholar 

  55. Gale WF, Totemeier TC (2004) Smithells metals reference book, 6th edn. Elsevier Butterworth-Heinemann, Oxford

    Google Scholar 

  56. Su YP, Lin X, Wang M, Xue L, Huang WD (2006) Absolute stability of the solidification interface in a laser resolidified Zn–2wt.%Cu hypoperitectic alloy. Chin Phys 15:1631–1637. https://doi.org/10.1088/1009-1963/15/7/042

    Article  CAS  Google Scholar 

  57. Su YP, Wang M, Lin X, Chen Q, Huang WD (2007) Numerical model for nucleation of peritectic alloy during unidirectional solidification. J Mater Sci 42:5360–5368. https://doi.org/10.1007/s10853-006-0891-0

    Article  CAS  Google Scholar 

  58. Jackson KA, Hunt JD (1988) Lamellar and Rod Eutectic Growth. In: Pierre Pelcé (eds) Dynamics of Curved Fronts. Academic Press, pp 363–376. https://doi.org/10.1016/B978-0-08-092523-3.50040-X

  59. Seethararnan V, Trivedi R (1988) Eutectic growth: selection of interlamellar spacings. Metall Mater Trans A 19:2955–2964. https://doi.org/10.1007/BF02647722

    Article  Google Scholar 

  60. Aguiar MR, Caram R (1997) Lamellar spacing selection in a directionally solidified SnSe eutectic alloy. J Cryst Growth 174:70–75. https://doi.org/10.1016/S0022-0248(96)01062-7

    Article  CAS  Google Scholar 

  61. Datye V, Langer JS (1981) Stability of thin lamellar eutectic growth. Phys Rev B 24:4155–4169. https://doi.org/10.1103/PhysRevB.24.4155

    Article  CAS  Google Scholar 

  62. Akamatsu S, Plapp M, Faiver G, Karma A (2004) Overstability of lamellar eutectic growth below the minimum-undercooling spacing. Metall Mater Trans A 35:1815–1828. https://doi.org/10.1007/s11661-004-0090-z

    Article  Google Scholar 

  63. Elliott R (1977) Eutectic solidification. Int Met Rev 22:161–165. https://doi.org/10.1179/imtr.1977.22.1.161

    Article  CAS  Google Scholar 

  64. Jackson KA (1958) Mechanism of growth. In: Maddin R (eds) Liquid Metals and Solidification. ASM, Cleveland, pp 174–186.

Download references

Acknowledgements

This work was supported by the National Key R&D Program of China (Grant No. 2016YFB1100100) and the Science and Technology Major Project of Sichuan Province, China (No. 2018SZDZX0012). The authors also thank Dr. Yaozhong Zou for proof reading.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yunpeng Su.

Ethics declarations

Conflict of interests

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Handling Editor: Sophie Primig.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Su, Y., Lin, X., Wang, M. et al. Phase and microstructure pattern selection of Zn-rich Zn–Cu peritectic alloys during laser surface remelting. J Mater Sci 56, 14314–14332 (2021). https://doi.org/10.1007/s10853-021-06199-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-021-06199-0

Navigation